
A Beginner’s Guide to Basic Statistics using R

Gregory S Gilbert

2021.03.25

Overview

This document provides model code for how to handle data and do basic statistical analyses in R. Here is
an overview of topics and functions covered.

Handling data in R Descriptive Stats Relationships Differences
Example data sets mean() cor() pearson t.test() nonpaired
Importing / looking at
data

sd() standard deviation cor() spearman t.test() paired

read.csv() import data median() lm() regression plot() boxplot
head() tail() snapshot quantile() plot() scatterplot aov() ANOVA
str() data structure summary() points() overlay TukeyHSD() posthoc
Parts of objects [r,c] sum() abline() trendline bartlett.test() variance
table() count table length() dim() – shapiro.test() normality
aggregate() functions by
groups

hist() – chisq.test() contingency

1

Handling data in R

Example data overview and access

Overview of data used in the data frames for this tutorial. For each, access the data using the Google sheets
link, and download a .csv file to your project directory. You may need to slightly rename downloaded files
to match that used in read.csv functions later in the the tutorial.

df1: two_sample_unpaired.csv
Above-ground biomass of California poppies grown in full sunlight or shade. First column represents a
categorical variable with two states; the second column includes numerical measures of a continuous variable.
n=12 for each.
https://docs.google.com/spreadsheets/d/1gNteUfXKCRam33d-NAOcCMzOzamEMnElSbEduvdoQsc

df2: two_sample_paired.csv
Volume of red or blue dyed 20% sucrose solution consumed by hummingbirds at each of 20 sites in two hour
periods. First column represents the site number; the second and third columns show the mL of solution
consumed as a continuous variable. Observations are paired because the feeders were hanging next to each
other at each of the sites.
https://docs.google.com/spreadsheets/d/1vVJvDX7G3DxlWGjR2bl8viOdoy-noeonm5UAErskRuw

2

https://docs.google.com/spreadsheets/d/1gNteUfXKCRam33d-NAOcCMzOzamEMnElSbEduvdoQsc
https://docs.google.com/spreadsheets/d/1vVJvDX7G3DxlWGjR2bl8viOdoy-noeonm5UAErskRuw

df3: four_variables.csv
Wing length (mm), wing width (mm), eye color, and wing pattern of a moth species. n=20. Used for
summary statistics, regression, correlation, tables. The first two variables are continuous numerical values,
and the second two variables are categorical. Well represents the observations on a single moth. https:
//docs.google.com/spreadsheets/d/1rRlU4XCm_nPiPV0bTzkP-juxmO5avfsGfYjbl3aP9Bc

df4: three_treatments.csv
Above-ground biomass of radish plants (oven-dry weight, in g) at 4 wk, from three treatments: control,
irrigated (5mm water every 3 days), and fertigated (5mm human urine every 3 days).
https://docs.google.com/spreadsheets/d/1nvoOsgpNXa5iI-uBpzHAbfGOUcLl6P4oWxqKI8cEDvs

3

https://docs.google.com/spreadsheets/d/1rRlU4XCm_nPiPV0bTzkP-juxmO5avfsGfYjbl3aP9Bc
https://docs.google.com/spreadsheets/d/1rRlU4XCm_nPiPV0bTzkP-juxmO5avfsGfYjbl3aP9Bc
https://docs.google.com/spreadsheets/d/1nvoOsgpNXa5iI-uBpzHAbfGOUcLl6P4oWxqKI8cEDvs

Importing and looking at your data

We will use the simple data set of four_variables, imported into data frame df3, to explore the basic
functions used to generate summary statistics. The first step is to download the data as a .csv file to your
project directory. I put mine inside the project directory folder, inside another folder called data.

Figure 1: Figure 1. Partial view of spreadsheet for summary statistics, regression, correlation: Wing length
and width (mm), eye color, and wing pattern of a moth species. n=20. These data are used in the data
frame df3

read.csv() Read in the data from a CSV file

The function read.csv() reads data from a comma-delimited file into a data frame. In this case we call the
data frame df3. Your data should be arranged with the first row including variable names (avoid spaces and
special characters except . or _). Each column is a variable of one type. Each row is a single observation,
so that the values in each of the columns corresponds to a single observation. If there are missing data, leave
that cell in the spreadsheet blank.

df3<-read.csv("data/four_variables.csv",as.is=FALSE)

This approach to the address for the CSV file to import assumes that it is inside your project directory and
then inside a folder called data. There are a number of other ways for you to point to the CSV file that you
want to import. The most flexible, is to use the function file.choose() to use your finder to browse for the
file. Like this:

df3<-read.csv(file.choose(),as.is=FALSE)

You can also specify the full path to your file on your computer. Note that file that choose does not work
within R markdown, but works very well just within the console. And easy way to get the path to a file on
your computer is to use the file.choose() function, but instead of embedding it in the read.csv() function,
just use it on its own in the console and it will show you the full path to your file. Like this:

file.choose()
[1] “/Users/greg/Dropbox/classes/ENVS104/Basic_Statistical_Tests/data/four_variables.csv”

Then you can embed that in the read.csv function like this:

df3<-read.csv(“/Users/greg/Dropbox/classes/ENVS104/Basic_Statistical_Tests/data/four_variables.csv”)

Here is a little script that will import each of the data frames used in this tutorial, after you have downloaded
the .csv files from Google sheets and put them into your project directory in another folder called data.

4

df1<-read.csv("data/two_sample_unpaired.csv",as.is=FALSE)
df2<-read.csv("data/two_sample_paired.csv",as.is=FALSE)
df3<-read.csv("data/four_variables.csv",as.is=FALSE)
df4<-read.csv("data/three_treatments.csv",as.is=FALSE)

head() and tail() Look at the first six or last six lines of a data frame

It is always a good idea to look at your data after you have read it into R. You can use the head(x) function
to look at the first six lines, and the tail(x) function to look at the last six lines. You can also specify the
number of lines that you would like to look at with an additional numeric argument. Note 1: If you want
to see all the data in your data frame, just type the name of the data frame. But if you have a lot of data,
this can look pretty messy.

head(df3) #peek at first six lines of your data in data frame df3

length width eye_color wing_stripe
1 12.5 8.2 black striped
2 13.2 8.1 black plain
3 12.1 6.5 red striped
4 14.8 9.0 black striped
5 12.6 6.9 black plain
6 16.2 10.0 red plain

tail(df3, 4) #peek at the last four lines of your data

length width eye_color wing_stripe
17 16.6 10.1 black striped
18 13.8 7.2 black striped
19 13.5 7.1 red plain
20 15.8 9.1 black plain

str() Look at the structure (variable types and length) of your data

It is always a good idea to look at the structure of your data before you move forward with analysis. Many
functions in R differ in behavior depending on the type of variable used as an argument. The str(x) function
tells you what type of variable you have, as well as the dimensions of your data set.

str(df3) #look at the structure of your data

'data.frame': 20 obs. of 4 variables:
$ length : num 12.5 13.2 12.1 14.8 12.6 16.2 10.6 13.4 14.1 11.1 ...
$ width : num 8.2 8.1 6.5 9 6.9 10 4.7 8.5 8.7 5.8 ...
$ eye_color : Factor w/ 2 levels "black","red": 1 1 2 1 1 2 2 2 1 1 ...
$ wing_stripe: Factor w/ 2 levels "plain","striped": 2 1 2 2 1 1 2 1 2 2 ...

Here we see that we have imported 20 observations from four variables. The first two observations are
numeric, and the third and fourth are listed as factors. Factors are categorical values, And most often the
way we want to read character values into data frames. Alternatively, those values could be represented as
character strings, and then used as variables rather than categories.
Common data structure types in R include

5

num[#:##]: a vector of numbers
num[#:##, #:##]: a matrix of numbers
data.frame: A data frame where each column is a single variable type, and each row an observation
list: A complex structure in R that includes variables, descriptors, and formulas. Extractor functions allow
you to access different components of a list.

Specifying or subsetting parts of data frames or vectors

R has a number of types of objects; all functions act on objects, together with other arguments that shape
what to do with the object. Functions take the form of function_name(object, arguments).

vector: multiple values in one variable (e.g., vector a includes the first five even numbers)

a<-c(2,4,6,8,10)
a

[1] 2 4 6 8 10

scalar: a variable with a single value (e.g., b<-6.2. b is a constant of value 6.2)

matrix: a 2-dimensional object of rows and columns, with every element of the same type. e.g.,a 3 x 4
(rows by columns) matrix m

m<-matrix(c(2,4,6,2,1,4,7,0,3,3,2,9),nrow=3, ncol=4, byrow=T)
m

[,1] [,2] [,3] [,4]
[1,] 2 4 6 2
[2,] 1 4 7 0
[3,] 3 3 2 9

data frame: 2-dimensional object where each column is a variable with values of one type, and each row is
an observation. This is the most common way to arrange data. e.g., df1-4, above.

You can refer to variables (columns in a data frame using the structure df$variable) and they behave as
vector objects and can be arguments for a function (e.g., mean(df3$width) gives the mean of variable width;
f<-a*5 creates a new vector f where each element of a is multiplied by five: 10, 20, 30, 40, 50)

You can use square bracket notation to refer to specific object elements [row,col] or create subsets of data.
a[3] will return the third element of a, which is 6
m[2,3] will return the element in the second row and third column of m, which is 7
m[,4] will return the vector of all elements in the fourth column: 2,0,9
m[1,] will return the vector of all elements in the first row: 2,4,6,2
df3$length will return the vector of all the elements of variable length
df3$length[df3$wing_stripe=="plain"] will return the subset of those values in df3$length where
wing_stripe is plain.
df3$wing_stripe[df3$width>=8] will return a vector wing_stripe values where width is greater than or
equal to 8.

6

Basic Statistics

Summary statistics of single variables: Histograms

mean() Mean of a set of values.

The mean(x) function calculates the mean of a set of values in a vector or a variable in a data frame. The
function assumes that all observations in the vector are included (na.rm=FALSE). If there are any missing
data (NA), add the argument na.rm=TRUE so that the means calculation ignores missing data.

mean(df3$length, na.rm=TRUE) #mean of variable length in data frame df3

[1] 13.825

sd() Standard deviation of a set of values.

The sd(x) function calculates the standard deviation of a set of values in a vector or a variable in a data
frame. The function assumes that all observations in the vector are included (na.rm=FALSE). If there are
any missing data (NA), add the argument na.rm=TRUE so that the means calculation ignores missing data.

sd(df3$length, na.rm=TRUE) #st dev of variable length in data frame df3

[1] 1.815105

median() Median of a set of values.

The median(x) function calculates the median of a set of values in a vector or a variable in a data frame. The
function assumes that all observations in the vector are included (na.rm=FALSE). If there are any missing
data (NA), add the argument na.rm=TRUE so that the means calculation ignores missing data. The median
is the quantile for the 0.5 probability (half of the observations are larger, and half smaller than the median).
See quantile() for additional details

median(df3$length, na.rm=TRUE) #median of variable length in data frame df3

[1] 13.75

quantile() Quantiles of a set of values.

The quantile(x,probs) function calculates quantiles for of a set of values in a vector or a variable in a data
frame. It assumes that all observations in the vector are included (na.rm=FALSE). If there are any missing
data (NA), add the argument na.rm=TRUE so that the calculation ignores missing data.
The function quantile(x,probs) requires at least two arguments; first is the object that contains the values
(a vector or variable in a data frame), and second is the probabilities for which to determine the quantiles.
Probabilities can be represented in a couple ways.
As a vector: c(0, 0.025, 0.25,0.5,0.75,0.975,1)
As a function: seq(0,1,0.25) which gives the sequence of values from 0 to 1 in intervals of 0.25.
Note 1: quantile(x,0.5) returns the median of the values in x Note 2: There are a number of different ways
to calculate quantiles. You can see the nine different options available through the type argument by looking
at the full R documentation: search for quantile in the help function. The default is type=7.

7

quantile(df3$length, probs=seq(0,1,0.1), na.rm=TRUE) #Quantiles for each 10% probability value of variable length in data frame df3

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
10.60 11.37 12.42 13.02 13.46 13.75 14.18 14.59 15.24 16.24 17.20

summary() Summary statistic of a set of values.

The summary(x) function is a strange function that does different things depending on what kind of argu-
ments you put in. When applied to a single variable it returns some useful summary statistics. It assumes
that all observations in the vector are included (na.rm=FALSE). If there are any missing data (NA), add
the argument na.rm=TRUE so that the calculation ignores missing data.

summary(df3$length, na.rm=TRUE) #summary statistics of variable length in data frame df3

Min. 1st Qu. Median Mean 3rd Qu. Max.
10.60 12.57 13.75 13.82 14.88 17.20

The summary(x) function actually returns a vector of six values. You can access each of the different elements
in the vector independently

summary(df3$length, na.rm=TRUE)[3] #the third element is the median

Median
13.75

summary(df3$length, na.rm=TRUE)[6] #the 6th element is the max

Max.
17.2

out1<-summary(df3$length, na.rm=TRUE) #put into object out1
out1[c(1,3,6)] #show elements 1, 3, 6

Min. Median Max.
10.60 13.75 17.20

sum() If the sum of the values in a set

The sum(x) function calculates the sum of a set of values in a vector or a variable in a data frame. The
function assumes that all observations in the vector are included (na.rm=FALSE). If there are any missing
data (NA), add the argument na.rm=TRUE so that the calculation ignores missing data.

sum(df3$length, na.rm=TRUE) #sum of values in variable length in data frame df3

[1] 276.5

8

length() and dim() Number of values in a vector or dimensions of a dataframe

The length(x) function gives you the number of elements in a vector, or the number of elements in a single
column of a data frame. You can also use the dim(x) function to get the number of rows (values) and number
of columns (variables) in a data frame.The output of dim() function is a vector of 2 elements [rows,columns],
and you can reference them independently.

length(df3$length) #length of values in variable length in data frame df3

[1] 20

dim(df3) # number of rows, columns in data frame df3

[1] 20 4

dim(df3)[2] #Number of variables in data frame df3

[1] 4

Importantly, both these functions do not differentiate between elements c ontaining values and those with
missing data (NAs), and there is no na.rm argument available. If you want to count only the number of
non-missing values in the length function, you need to specify not to include missing values. The ! signifies
“not” in R-speak.

length(x[!is.na(x)]) #length of variable x where the value of x is not missing

hist() Histogram of values in a single variable

The most fundamental way to summarize the values of a continuous variable graphically is in a histogram.
The histogram counts the frequency of values in arbitrarily divided bins along the continuous variable. Let’s
first look at the default histogram produced by R, and then we will look at making it a little prettier.

hist(df3$length) #default histogram of variable length in data frame df3

Histogram of df3$length

df3$length

F
re

qu
en

cy

10 12 14 16 18

0
2

4

9

A few things you can do that help make the figure stronger:
1. Axes should have informative labels, and include units whenever possible. Use xlab and ylab arguments
to set those levels.
2. Figures should generally not have a title above them. We move the title by setting the option main=NA.
3. The values on the axes should generally all read horizontally. You can set this with the option las=1.
4. You might want more or less resolution in the bin sizes and can set these with the brakes option. This
can be done in two ways, either by setting the number of bins (breaks=6), or by specifying the start values
for each bin [e.g., breaks=c(4,8,12,16,20,24,28) or breaks=seq(4,26,2)].
5. Can you change the color of the bars if you would like, but please choose colors that are friendly on the
eyes.
6. In R markdown you can add caption to the figure in the header of the code like this.

hist(df3$length,
main=NA,
xlab='Wing length (mm)',
ylab='Number of moths',
breaks=seq(10,18,1),
las=1,
col='lightblue')

box() # puts boundary box around figure

Wing length (mm)

N
um

be
r

of
 m

ot
hs

10 12 14 16 18

0
1
2
3
4
5

Figure 2: Figure 4. Length of wings of the Santa Cruz brown moth (n=20).

Making summary tables of multiple groups

table() tabulate counts within categories

Use the table() function to count the number of observations within categories (factors). Tables can be one
dimensional (e.g., number of individuals in each category within a single variable) or multi-way, contingency
tables, that count the number of observations in intersections of categories.

10

Count the number of moths with each eye color
table(df3$eye_color)

##
black red
13 7

Contingency count the number of moths with each eye color and wing color combination
table(df3$eye_color,df3$wing_stripe)

##
plain striped
black 4 9
red 4 3

aggregate() calculates summary statistics on subsets (groups) of data

Use the aggregate() function to divide the data into subsets (categories, often based on factors) and then
calculate all kinds of summary statistics for each subset. Aggregate() takes three important arguments:
aggregate (x, by, FUN)
x is the variable you want to summarize
by indicates the variable used to subset the data. Note that you must enclose the variable name in list(),
because the function expects the categories to be presented in that form.
FUN is the function for the desired summary statistic. You can use almost any summary statistics function
you can apply to a vector.
In some cases, there will be additional options available.
For instance, we can calculate summary statistics of wing length of moths with plain ro striped wing patterns
in df3

#calculate the mean wing length of moths in each wing pattern group
aggregate(df3$length,by=list(df3$wing_stripe),FUN=mean)

Group.1 x
1 plain 14.18750
2 striped 13.58333

#or embed aggregate() in setNames() to add informative column names to the output
setNames(aggregate(df3$length,by=list(df3$wing_stripe),FUN=mean),c("Wing_stripe","mean_length"))

Wing_stripe mean_length
1 plain 14.18750
2 striped 13.58333

#you some FUNctions requires additional arguments, which just follow a comma.
#Calculate the min, 1st quartile, median, 3rd quartile, and max for length
aggregate(df3$length,by=list(df3$wing_stripe),FUN=quantile, probs=c(0, .25, .5, .75, 1))

Group.1 x.0% x.25% x.50% x.75% x.100%
1 plain 12.600 13.350 13.600 15.275 16.200
2 striped 10.600 11.925 13.950 14.575 17.200

11

#you can assign the output of aggregate() to an object (data frame) for further use.
#calculate the mean for each group
mn<-setNames(aggregate(df3$length,by=list(df3$wing_stripe),FUN=mean),c("Wing_stripe","mean"))
#calculate the standard deviation for each group
sd<-setNames(aggregate(df3$length,by=list(df3$wing_stripe),FUN=sd),c("Wing_stripe","sd"))
#calculate the number of individuals for each group
num<-setNames(aggregate(df3$length,by=list(df3$wing_stripe),FUN=length),c("Wing_stripe","n"))
msn<-merge(mn,sd); msn<-merge(msn,num) #merge the objects by Wing_stripe
msn #show the resulting summary

Wing_stripe mean sd n
1 plain 14.18750 1.326044 8
2 striped 13.58333 2.100577 12

Relationships between variables

Correlations

cor() Correlation between two sets of data

The Pearson correlation coefficient r is a measure of the linear correlation between two variables.
Pearson’s r ranges from -1 to 1. r = -1 means a plot of the two variables x and y fall on a line where y
decreases as x increases; r = 1 indicates they fall on a line where y increases as x increases. r = 0 indicates
no correlation between them.
The Spearman rank correlation coefficient 𝜌 (rho or rs) is a non-parametric, rank-based correlation
between two variables. It asks if the two variable change together in a monotonic way, but not if that
relationship is linear. 𝜌 is -1 or +1 if one variables is a perfect monotonic function of the other.
Both of these correlation coefficients can be testes using cor().

cor(df3$length,df3$width,method="pearson") #Pearson correlation

[1] 0.8493295

cor(df3$length,df3$width,method="spearman") #Spearman rank correlation

[1] 0.8412342

Present statistics in the text:
The lengths and widths of wings of the Santa Cruz brown moth were strongly positively correlated (r =
0.85).

There are several possible, but approximated, statistical tests of significance (is r or 𝜌 significantly different
from zero) available using the test.cor() function. However, in most cases, we don’t need to invoke a test of
significance to make inferences; we are more interested in the correlations as descriptors of relationships than
of tests of relationships. The closer to |1|, the stronger the correlation. If you are interested in statistical
tests of relationships between variables, use regression.

12

lm() Linear regression

Calculate a linear regression 𝑦 = 𝑚𝑥 + 𝑏 of two continuous variables. In this case y is the dependent and x
is the independent variable. m is the slope„ and b is the intercept.
In the case of the relationship between the length and width of moth wings. In R, we express y as a function
of x as y ~ x

calculate a linear regression of lenght as a function of width
lm(df3$length~df3$width)

##
Call:
lm(formula = df3$length ~ df3$width)
##
Coefficients:
(Intercept) df3$width
5.346 1.072

This gives you the intercept and slope values: 𝑙𝑒𝑛𝑔𝑡ℎ = 1.072 ∗ 𝑤𝑖𝑑𝑡ℎ + 5.346
To ask whether the slope is significantly different from zero, and what the R2 value is, we need to use an
extractor function, either summary() or anova()

First, lets send the regression output into an object we’ll call lmout1. Then we can do several things to that
object. * look at the structure of the object str() * look at the summary of the object summary() * plot the
points in a scatterplot, and overlay the regression line (abline())

#make an object lmout1 using the lm() function
lmout1 <- lm(df3$length~df3$width)
#lmout1 is an object of type list with many hidden components
#try typing in the console
#str(lmout1)
#to see what is inside the list object lmout1
#Fortunately, you can easily extract the statistics you need from lmout1 using the extractor function summary
summary(lmout1)

##
Call:
lm(formula = df3$length ~ df3$width)
##
Residuals:
Min 1Q Median 3Q Max
-1.6359 -0.6326 -0.0963 0.5823 1.7145
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.346 1.261 4.238 0.000495 ***
df3$width 1.072 0.157 6.826 2.17e-06 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 0.9844 on 18 degrees of freedom
Multiple R-squared: 0.7214, Adjusted R-squared: 0.7059
F-statistic: 46.6 on 1 and 18 DF, p-value: 2.17e-06

13

Look to see where to find the statistics you need to evaluate the line. This output shows the estimates for
the Intercept (5.346) and slope (1.072). The Adjusted R2 = 0.7059. The F statistic is 46.6, with degrees of
freedom 1 and 18, and a corresponding p-value = 2.17e-06 (0.00000217). The p-value tell you if the slope is
significantly different from zero (note that it is the same as the value for Pr(>|t|) for df3$width). Can you
find all those numbers in the output?

Present statistics in the text, calling out to Figure 3 (see next section):
There was a strong linear relationship between the length and width of the wings of the Santa Cruz
brown moth (Fig. 3; 𝑙𝑒𝑛𝑔𝑡ℎ = 5.346 + 1.072 ∗ 𝑤𝑖𝑑𝑡ℎ, F1,18=46.6, P ≤ 0.000002, R2

adj=0.706).

’There was a strong linear relationship between the length and width of the wings of the Santa Cruz
brown moth (Fig. 3; 𝑙𝑒𝑛𝑔𝑡ℎ = 5.346 + 1.072 ∗ 𝑤𝑖𝑑𝑡ℎ, F1,18=46.6, P ≤ 0.000002, R2

adj=0.706).

plot() Plot to create a scatterplot

Let’s then look at the same relationship between length and width of the moth wings graphically, as a
scatterplot with the dependent variable on the vertical axis. We can then overlay the best-fit line from the
linear regression above on top of the scatterplot.

The plot() function will create a scatterplot from either of two formulations plot(y~x) or plot(x,y).

plot(df3$length~df3$width,
xlab='Wing width (mm)',ylab= 'Wing length (mm)',
las=1, pch=19, col="orange")

abline(lmout1) #draws the regression line using slope and intercept from lmout1

5 6 7 8 9 10

11

12

13

14

15

16

17

Wing width (mm)

W
in

g
le

ng
th

 (
m

m
)

Figure 3: Figure 3. Relationship between the wing length and width of the Santa Cruz brown moth.

14

points(x,y) Create overlays on a plot

Let’s imagine we want to analyze and plot the wing length~width independently for moths with striped or
plain wings. Here is one way to do that: +create separate data frames for striped and plain morphs of moths
using []
+do separate regressions of 𝑙𝑒𝑛𝑔𝑡ℎ 𝑤𝑖𝑑𝑡ℎ for each morph using lm()
+create a scatterplot with different symbols for each morph plot() and points()

striped<-df3[df3$wing_stripe=="striped",] #make new df with only striped
plain<-df3[df3$wing_stripe=="plain",] #make new df with only plain
#peak at each
head(striped); head(plain)

length width eye_color wing_stripe
1 12.5 8.2 black striped
3 12.1 6.5 red striped
4 14.8 9.0 black striped
7 10.6 4.7 red striped
9 14.1 8.7 black striped
10 11.1 5.8 black striped

length width eye_color wing_stripe
2 13.2 8.1 black plain
5 12.6 6.9 black plain
6 16.2 10.0 red plain
8 13.4 8.5 red plain
12 15.1 7.5 red plain
15 13.7 6.5 black plain

#make the two linear regressions
stripeout<-lm(striped$length~striped$width)
plainout<-lm(plain$length~plain$width)

#look at the statistics
summary(stripeout)

##
Call:
lm(formula = striped$length ~ striped$width)
##
Residuals:
Min 1Q Median 3Q Max
-1.45986 -0.51291 0.01454 0.50294 1.73404
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.4598 1.4256 3.128 0.0107 *
striped$width 1.1585 0.1776 6.524 6.69e-05 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 0.9609 on 10 degrees of freedom

15

Multiple R-squared: 0.8098, Adjusted R-squared: 0.7907
F-statistic: 42.57 on 1 and 10 DF, p-value: 6.686e-05

summary(plainout)

##
Call:
lm(formula = plain$length ~ plain$width)
##
Residuals:
Min 1Q Median 3Q Max
-1.2155 -0.8303 0.1947 0.6845 1.2808
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.8468 2.5413 3.088 0.0214 *
plain$width 0.7963 0.3161 2.519 0.0453 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 0.9984 on 6 degrees of freedom
Multiple R-squared: 0.5141, Adjusted R-squared: 0.4331
F-statistic: 6.348 on 1 and 6 DF, p-value: 0.04532

From these statistics, we can see that both of the regression lines are statistically significant (slopes are
different from zero, P ≤ 0.05). We can go ahead with the scatterplot and superimposed trend lines in a
figure.

#make a plot with striped and then overlay plain.
plot(striped$length~striped$width,

xlab='Wing width (mm)',ylab= 'Wing length (mm)',
las=1, pch=19, col="orange")

points(plain$width,plain$length, pch=1)
abline(stripeout,lty=1)
abline(plainout, lty=2)

#Differences between and among groups ## Two-sample means comparison: independent t-test and box
plots t-tests are used to compare means of a continuous variables measured in two discrete groups. The
groups may be experimental treatments or clear categories (species, biological sex). A t-test is considered
independent (a.k.a., non-paired) if the individuals sampled are selected independently from the two groups,
or as a paired t-test if pairs of individuals across groups have a structural reason that makes them non-
independent (e.g., mates; from same location; paired experimental design). The organization of data differs
between two-sample unpaired (df1) and two-sample paired (df2) approaches.

t.test() to compare means for unpaired data

The t.test() function tests for differences between the mean values of the dependent variable across two
discrete groups (independent variable). If observations of individuals in the two groups are not structurally
related to each other (i.e., they are not in natural pairs) a non-paired, independent t-test is appropriate.
There are assumptions of normality of data. The Welch Two-Sample t-test does not assume equal variances
across the groups. (see bartlett.test() below for test of homogeneity of variances) We will use df1 as an
example.

16

5 6 7 8 9 10

11

12

13

14

15

16

17

Wing width (mm)

W
in

g
le

ng
th

 (
m

m
)

Figure 4: Figure 3. Relationship between the wing length and width for striped (orange points) and plain
(open circles) morphs of the Santa Cruz brown moth. Striped: 𝑙𝑒𝑛𝑔𝑡ℎ = 4.46 + 1.16 ∗ 𝑤𝑖𝑑𝑡ℎ, F1,10=42.6, P
� 0.000066, R2

adj=0.79; Plain: 𝑙𝑒𝑛𝑔𝑡ℎ = 7.85 + 0.79 ∗ 𝑤𝑖𝑑𝑡ℎ, F1,6=6.3, P � 0.045, R2
adj=0.43

17

aggregate(df1$mass_g, by=list(df1$treatment),FUN=mean) #group means

Group.1 x
1 light 21.70833
2 shade 18.66667

aggregate(df1$mass_g, by=list(df1$treatment),FUN=sd) #group stdevs

Group.1 x
1 light 2.287698
2 shade 2.433977

t.test(df1$mass_g~df1$treatment) #perform t-test

##
Welch Two Sample t-test
##
data: df1$mass_g by df1$treatment
t = 3.1544, df = 21.916, p-value = 0.004615
alternative hypothesis: true difference in means between group light and group shade is not equal to 0
95 percent confidence interval:
1.041448 5.041885
sample estimates:
mean in group light mean in group shade
21.70833 18.66667

Present statistics in the text:
California poppies grown in full sunlight were larger (mean 21.7 ± sd 2.8 g) than those grown in shade (18.7
± 3.5 g) (t = 3.15, df = 21.9, p = 0.0046).

plot() to create boxplot

plot(df1$treatment, df1$mass_g, xlab='Treatment',ylab='Above-ground biomass (g)', las=1,col='lightblue')
points(c(1,2),c(21.7,18.7),pch=19) #optional superimpose mean

Call out to figure from the text:
California poppies grown in full sunlight were larger than those grown in shade (Figure 2; t = 3.15, df =
21.9, p = 0.0046).

t.test() to compare means for paired data

The t.test() function tests for differences between the mean values of the dependent variable across two
discrete groups (independent variable). If observations of individuals in the two groups are structurally
related to each other in natural pairs, a paired t-test is appropriate. There are assumptions of normality of
data. The Welch Two-Sample t-test does not assume equal variances across the groups. We will use df2 as
an example.

18

light shade

16

18

20

22

24

Treatment

A
bo

ve
−

gr
ou

nd
 b

io
m

as
s

(g
)

Figure 5: Figure 2. Above ground biomass of California poppies grown in full sunlight or shade. Solid circle
indicates mean.

19

mean(df2$red_mL); mean(df2$blue_mL) #group means

[1] 37.04

[1] 28.03

sd(df2$red_mL); sd(df2$blue_mL) #group stdevs

[1] 3.929296

[1] 3.599284

t.test(df2$red_mL,df2$blue_mL, paired=TRUE) #perform paired t-test

##
Paired t-test
##
data: df2$red_mL and df2$blue_mL
t = 121.26, df = 19, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
8.85448 9.16552
sample estimates:
mean of the differences
9.01

Present statistics in text:
Hummingbirds consumed much more sugar water when it was dyed red (mean 37.0 ± sd 3.9 mL h-2) than
blue (28.0 ± 3.6 mL h-2) (t = 121.3, df = 19, p ≤ 0.00001).

plot() to create boxplot from unpaired data

boxplot(df2$red_mL, df2$blue_mL,
xlab='Sucrose solution color',ylab='Liquid consumed (mL/h)',
las=1,names=c('red','blue'),
col=c('red','lightblue'))

points(c(1,2),c(37.04,28.03),pch=19) #optional superimpose mean

Call out to figure from the text:
Hummingbirds consumed more sucrose solution (20% w/v) when died red than blue (Figure 3) (paired t =
121.26, df = 19, p ≤ 0.00001).

Analysis of Variance: compare means of three or more groups

lm() and anova()

To compare the means of three or more groups, we use Analysis of Variance (ANOVA), which compares the
differences in the means among groups to that expected given the variance within groups. The test statistic

20

red blue

25

30

35

40

45

Sucrose solution color

Li
qu

id
 c

on
su

m
ed

 (
m

L/
h)

Figure 6: Figure 3. Consumption of red and blue sucrose solution (20%) by hummingbirds.

21

is an F-statistic, with two degrees of freedom, the first for the model (number of groups - 1) and the second
related to the overall number of observations (# observations - # groups - 1). The significance of differences
among any groups is evaluated with a P-value. If the P-value is below the alpha threshold (P ≤ 0.05), we can
compare each of the means to each other using the Tukey HSD (Honestly Significant Difference) post-hoc
test.

There are several ways in R to do ANOVAs, including aov(), lm(), and glm(); each has slightly different
approaches. The output of the models is best evaluated using extractor functions: summary(), anova(), and
TukeyHSD().

Like for regression, the general model takes the form y ~ x; where y is the continuous dependent variable
and x is a categorical value (like a treatment or characteristic).

Data frame df4 includes plant biomass for each of three treatments: irrigation, fertigation, and control. We
will use ANOVA to ask whether the treatments have an effect on plant biomass, and which of the treatments
differ from the other. In particular, is there an effect of fertigation (applying human urine) that differs from
the effect of irrigation with plain water?

use aggregate to calculate basic summary statistics of the three treatments
mn4<-setNames(aggregate(df4$biomass_g,by=list(df4$treatment),FUN=mean),c("Biomass_g","mean"))
sd4<-setNames(aggregate(df4$biomass_g,by=list(df4$treatment),FUN=sd),c("Biomass_g","stdev"))
num4<-setNames(aggregate(df4$biomass_g,by=list(df4$treatment),FUN=length),c("Biomass_g","n"))
msn4<-merge(mn4,sd4); msn4<-merge(msn4,num4)
msn4 #show the resulting summary

Biomass_g mean stdev n
1 control 5.251667 1.157331 12
2 fertigated 8.098333 1.293844 12
3 irrigated 7.916667 1.115024 12

#use aov() function to calculate the analysis of variance
aovout4<-aov(df4$biomass_g~df4$treatment) #analysis of variance
summary(aovout4) #extractor function

Df Sum Sq Mean Sq F value Pr(>F)
df4$treatment 2 60.95 30.477 21.48 1.06e-06 ***
Residuals 33 46.82 1.419

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The ANOVA table provide the statistics needed to determine if any of the group means differ from each
other.
F statistic = 21.48 Degrees of freedom = 2,33 P-value = 1.06e-06 = 0.00000106 Note the *** following the
treatment row P value; according to the key that is statistically significant at the 0.001 level.

A shorthand way to present those statistics in text:
(F2,33 = 21.48, P ≤ 0.000001)

Because the overall model is statistically different (there are differences in the means, but we don’t know
which means differ) we can then do a Tukey’s HSD post-hoc comparison.

#Post-hoc Tukey's Honestly Significant Difference comparison of means
TukeyHSD(aovout4) #post-hoc comparison of means

22

Tukey multiple comparisons of means
95% family-wise confidence level
##
Fit: aov(formula = df4$biomass_g ~ df4$treatment)
##
$`df4$treatment`
diff lwr upr p adj
fertigated-control 2.8466667 1.653394 4.039940 0.0000044
irrigated-control 2.6650000 1.471727 3.858273 0.0000131
irrigated-fertigated -0.1816667 -1.374940 1.011606 0.9261321

This output looks a bit weird at first. It shows the difference in mean values for each pair of treatments
(e.g., fertigated - control). If you look at the means from the aggregate table above, fertigated biomass mean
= 8.098333 and control = 5.251667.
8.098333-5.251667 = 2.846666, the value of “diff” in the Tukey’s table. The table also give lower and upper
bounds for the HSD range: if the range includes zero, the difference between the two treatments is not
considered significant. There is also a P-value (adjusted for multiple comparisons) given for the statistical
difference between each pair. In this case, fertigated and irrigated are both highly statistically difference
from control, but they are not different from each other.

We can present these results graphically using a box plot or with a table, and with accompanying text.

Here we can make a box plot and use blue points to overlay the means of each treatment (calculated above
in mn4; we just need the values in the second column, so we use [,2]). We can use the text function to
overlay letters that indicate which treatments are the same (have the same letter) and which differ. The
text function takes the arguments text(x,y,labels). The center of the treatments are ordered as 1,2,3 on the
x axis. The y placement is just above the 0.75 quantile, calculated using the quantiles function.

plot(df4$biomass_g~df4$treatment,
xlab="Treatment", ylab="Biomass (g)", las=1)

points(c(1,2,3),mn4[,2],pch=19, col="blue") #treatment means
text(c(1.2,2.2,3.2),

y=aggregate(df4$biomass_g,by=list(df4$treatment),FUN=quantile,prob=0.75)[,2],
labels=c("A","B","B"),pos=3)

Describe that in text:
Radish growth appears to be limited by access to water, since both irrigation and fertigation (with the
same amount of liquid applied) significantly increased growth compared to the control, which only received
ambient water from rain and dew (Figure 4). The additional nutrients in fertigation (primarily nitrogen in
the human urine) did not significant increase growth more than plain water, suggesting the plants are not
nutrient limited (Figure 4).

Testing assumptions of normality and homogeneity of variance

bartlett.test() F test of equality of variance among groups

For t-tests and ANOVAS, there is an assumption that the variances in each of the groups are the same
(assumption of homogeneity of variance). There are several possible tests for the (F-test of variance (for two
groups), Bartlett’s test (assumes normality), Fligner-Killeen test (non-parametric), and the Levene test).
The Bartlett test can be used either with data as a formula or as separate groups in a list

23

control fertigated irrigated

4

6

8

10

Treatment

B
io

m
as

s
(g

)

A

B B

Figure 7: Figure 4. Above ground biomass of radishes growth with three treatments. Box plots indicate
quartiles; blue circles are mean values. Treatments with the different letters are statistically different (F2,33
= 21.48, P � 0.000001, Tukey’s HSD post-hoc comparison).

24

bartlett.test(df1$mass_g~df1$treatment) #formula version

##
Bartlett test of homogeneity of variances
##
data: df1$mass_g by df1$treatment
Bartlett's K-squared = 0.040394, df = 1, p-value = 0.8407

bartlett.test(list(df2$red_mL,df2$blue_mL)) #separate groups version

##
Bartlett test of homogeneity of variances
##
data: list(df2$red_mL, df2$blue_mL)
Bartlett's K-squared = 0.14229, df = 1, p-value = 0.706

For both comparisons, the p-value is » 0.05, so there is no evidence that the variances of the two groups are
different (meets assumption of homogeneity of variance). (P ≤ 0.05 would indicate the variances are unequal
between groups)

shapiro.test() Shapiro-Wilk test of normality

Many parametric statistical tests assume the values in a single variable are drawn from a normal distribution.
The Shapiro-Wilk test asks if the distribution of values in a variable differ from the normal distribution

shapiro.test(df3$length)

##
Shapiro-Wilk normality test
##
data: df3$length
W = 0.98365, p-value = 0.9722

From the output, the p-value > 0.05 implying that the distribution of the data are not significantly different
from normal distribution. In other words, we can assume the normality. (p$�$0.05 would indicate the values
are non-normal).

Contingency table analysis

chisq.test(observed_table) Chi-square (𝜒2) test of independence

Let’s use df3 to ask if eye color (red or black) is independent of wing pattern (plain or striped) in Santa
Cruz moths. First we use the table() function to calculate the two-way contingency table of observed states.
Then the chisq.test() function takes that table as its argument.

eye_wings<-table(df3$eye_color,df3$wing_stripe) #make contingency table
eye_wings #show the table

25

##
plain striped
black 4 9
red 4 3

chisq.test(eye_wings) #calculate the chi sq

Warning in chisq.test(eye_wings): Chi-squared approximation may be incorrect

##
Pearson's Chi-squared test with Yates' continuity correction
##
data: eye_wings
X-squared = 0.44872, df = 1, p-value = 0.5029

Describe the results in text:
Eye color and wing pattern are independent traits in Santa Cruz moths (𝜒2 = 0.45, df=1, P ≤ 0.50).
Note: small sample size influences the reliability of the statistic

#Still to come
#logistic?
#barplot()
#apply()
#for-loops

26

	Overview
	Handling data in R
	Example data overview and access
	Importing and looking at your data
	read.csv() Read in the data from a CSV file
	head() and tail() Look at the first six or last six lines of a data frame
	str() Look at the structure (variable types and length) of your data

	Specifying or subsetting parts of data frames or vectors

	Basic Statistics
	Summary statistics of single variables: Histograms
	mean() Mean of a set of values.
	sd() Standard deviation of a set of values.
	median() Median of a set of values.
	quantile() Quantiles of a set of values.
	summary() Summary statistic of a set of values.
	sum() If the sum of the values in a set
	length() and dim() Number of values in a vector or dimensions of a dataframe
	hist() Histogram of values in a single variable

	Making summary tables of multiple groups
	table() tabulate counts within categories
	aggregate() calculates summary statistics on subsets (groups) of data

	Relationships between variables
	Correlations
	cor() Correlation between two sets of data
	lm() Linear regression
	plot() Plot to create a scatterplot

	points(x,y) Create overlays on a plot
	t.test() to compare means for unpaired data
	plot() to create boxplot

	t.test() to compare means for paired data
	plot() to create boxplot from unpaired data

	Analysis of Variance: compare means of three or more groups
	lm() and anova()

	Testing assumptions of normality and homogeneity of variance
	bartlett.test() F test of equality of variance among groups
	shapiro.test() Shapiro-Wilk test of normality

	Contingency table analysis
	chisq.test(observed_table) Chi-square (\chi2) test of independence

