
Getting Started In R
Gregory	S	Gilbert	

11/06/2016	

Goals: Getting Started with R
(1) get	R	installed	and	running,	
(2) be	comfortable	with	R	studio	and	the	R	framework	(console,	editor,	quartz,	and	

help	panes)	
(3) understand	basic	R	notation	and	operators	to	be	able	to	do	simple	functions,	
(5) import	your	own	data	into	R	from	a	spreadsheet	

(1) Install R and R Studio on your computer
R	is	provided	free	by	the	R	project	(https://www.r-project.org/).	

You	can	run	it	straight	out	of	the	box,	but	most	users	like	to	run	R	within	RStudio,	which	is	
a	free	program	that	helps	you	keep	your	R	work	organized.	

INSTALL R on your computer
(1) Go	to	the	R	website	at	http://www.r-project.org/.	
(2) Click	on	the	link	in	the	first	paragraph	download	R	or	on	the	left	navigation	bar	

for	CRAN	
(3) Choose	a	nearby	mirror	site	from	the	list	(e.g.,	http://cran.cnr.Berkeley.edu)	
(4) From	the	Download	and	Install	R	box,	choose	Linux,	(Mac)	OS	X,	or	Windows,	as	

appropriate	for	your	operating	system.	
	

(5) Download	and	install	the	most	recent	package	that	your	system	can	handle.	

INSTALL RStudio on your computer
(1) Go	to	https://www.rstudio.com/	
(2) From	the	Products	menu,	choose	RStudio	
(3) Select	the	Desktop	option.	
(4) Click	on	the	Download	RStudio	Desktop	button	to	install.	

Open RStudio as you would any other application.
	

....	

(2) FOUR KEY WINDOWS in the R framework
The	R	interface	has	four	key	windows	that	you	will	use.	RStudio	adds	a	few	more,	but	we'll	
deal	with	them	as	they	are	needed	

Script	(Console):	This	is	where	you	enter	and	execute	commands,	and	where	textual	
output	of	your	analyses	appear.	

Source	(Editor):	This	where	you	write	your	code,	or	open	it	from	a	saved	file.	Copy	and	
paste	from	here	into	the	console	window,	or	better	yet,	put	your	cursor	on	the	line	of	code	
(or	highlight	a	block	of	code)	and	then	select	Run	Selected	Lines	from	the	tool	bar	(or	
command-return	[mac]	Control-R	[windows]).	

Writing	code	in	the	Source	window	provides	automatic	helpful	hints	to	the	formatting	of	
functions,	and	is	easier	to	fix,	re-run,	and	save	than	code	directly	in	the	Console.	

Plots	(Quartz	device):	This	is	where	graphical	output	goes	by	default.	On	a	mac,	use	right	
and	left	arrows	to	scroll	through	the	plots	you	make	in	a	session.	On	a	PC	you	need	to	(1)	
create	a	graphic,	(2)	with	the	graphic	window	active,	go	to	the	History	tab,	next	to	File.	(3)	
Click	on	Recording	and	make	sure	it	is	checked.	(4)	Now	each	graph	in	the	session	is	
recorded;	use	PgUp	dn	PgDn	to	scroll.	

	

Help:	Finally,	R	has	very	useful	help	functions.	For	instance,	if	you	what	help	for	the	
function	plot,	either	help(plot)	or	

?plot	

will	open	up	an	R	Help	Window	(in	RStudio,	in	the	same	place	as	Plots),	with	detailed,	
standardized-format	instructions	on	how	to	use	that	function.	In	RStudio,	you	can	also	just	
click	on	the	Help	tab,	then	put	the	term	you	want	in	the	search	bar	with	the	magnifying	
glass.	The	format	for	R	help	at	first	is	a	bit	cryptic,	but	all	the	functions	take	the	same	
format.	Once	you	get	it,	you	can	quickly	learn	what	you	need	for	any	function	in	the	R	
universe.	
....	

(3) Trying it out - operators, objects, and funcitons
Let's	start	of	playing	directly	in	the	Console	window.	You	face	the	dreaded	>	prompt,	with	
no	indication	of	what	to	do.	Don't	panic!	

R as a calculator
In	the	Console	window,	after	the	">""	prompt,	just	type	some	arithmetic	expressions,	using	
familiar	operators	+-*/(),	each	followed	by	a	return	

6+6	

## [1] 12	

43*2+(7+2)/14	

## [1] 86.64286	

In	the	console,	if	you	want	to	repeat,	or	copy	and	modify	something	from	a	previous	line,	
just	use	the	up	arrow	to	move	through	previous	lines	until	the	one	you	want	appears	at	
the	active	prompt.	Then	edit	it	as	you	want,	and	hit	return	again!	Try	arrowing	up	to	the	
6+6	line,	then	change	it	to	6+6*3	and	return	

Now let's use the Script window
In	the	Script	window,	type	7+5.	With	the	cursor	still	on	that	line,	click	the	Run	button	(or	
command-return	(mac)	or	control-R	(windows)).	Look	what	appears	in	the	Console!	

Assigning values to objects
Data	are	bundled	together	in	objects	of	different	types,	and	then	we	use	functions	to	
manipulate	the	objects.	We	assign	values	to	an	object	using	"<-"	

a<-64 #assign the value 64 to the object "a"	
b<-(a+23)/4 #assigns the value of the expression to "b"	
a #just typing the name of the object shows its value	

## [1] 64	

b*a #this returns the product of a and b, but does not keep it	

## [1] 1392	

d<-b*a # this assigns the product to a new object "d"	
d	

## [1] 1392	

Names for objects
Names	for	objects	should	start	with	a	letter	and	avoid	special	characters	or	spaces.	
Two	special	characters	that	are	permitted	and	useful	are	"_"	and	".".	

names	OK	 May	cause	problems	
hair_color	 hair	color	
dbh.mm	 dbh(mm)	
sample1	 sample$4	

Everything	in	R	is	case	sensitive:	

dbh.mm ≠ DBH.mm

sample1 ≠ Sample1

Functions do things with objects
Functions	are	always	followed	by	their	object,	included	in	parentheses.	Many	functions	can	
also	take	options	inside	the	parenthesis,	and	separated	by	commas	from	the	object	

function(object,option1, option2, option3)

sqrt(25)	

## [1] 5	

a<-125	
sqrt(a)	

## [1] 11.18034	

round(a/7,digits=2) #round a/7 to 2 digits	

## [1] 17.86	

round(sqrt(a/7),digits=3) #you can nest functions	

## [1] 4.226	

aover7<-round(a/7,digits=2) #assign the output to an object	
aover7 #but you don't see the value until you request it	

## [1] 17.86	

v1<-c(3,4,6,8,7,3,4,9,8) #make vector of numbers	
mean(v1) #calculate the mean of the numbers	

## [1] 5.777778	

length(v1) #find the number of elements in the vector	

## [1] 9	

....	

Relational operators
symbol	 meaning	 example	 read	as	
<	 less	than	 x	<	y	 x	is	less	than	y	
>	 greater	than	 x	>y	 x	is	greater	than	y	
==	 equal	to	 x	==y	 x	is	equal	to	y	
<=	 less	than	or	equal	to	 x	<=y	 x	is	less	than	or	equal	to	y	
>=	 greater	than	or	equal	to	 x	>=y	 x	is	less	than	or	equal	to	y	
!=	 not	equal	to	 x!=y	 x	is	not	equal	to	y	

%in%	 included	in	the	set	 var	%in%	c(1,3,5)	 var	is	in	the	set	

.	

.	

.	

Basic R Notation
symbol	 meaning	
#	 Anything	following	the	"#"	and	before	a	carriage	return	is	treated	as	a	

comment,	and	is	not	executed.	Use	it	to	annotate	code.	#annotate!	
?	 Help	function,	where	?x	looks	up	R	help	for	x.	Also	help(x)	
<-	 Assign.	Sets	an	object	to	be	equal	to	whatever	is	on	the	right	side	of	the	"<-"	

symbol.	a<-9.	Note	equivalent	to	a=9,	BUT	=	can	only	be	used	at	top	level,	so	
avoid	using	=	to	mean	assign.	

()	 Round	brackets.	Functions	act	on	whatever	is	inside	the	round	
brackets.log10(100)	returns	the	base10	log	of	100,	that	is,	2	

c()	 Concatenate	function.	Creates	a	vector	of	multiple	elements.	d<-c(1,2,4,6)	#	
sets	d	to	be	a	4-element	vector	with	elements	1	2	4	6	

[]	 Square	brackets.	Indicates	the	position	inside	a	vector	or	matrix.	d[3]	has	the	
value	4	for	the	vector	d<-c(1,2,4,6).	f[1:5,2:3]	returns	rows	1	to	5	of	columns	2	
and	3	of	matrix	f	

{}	 Curly	brackets.	Marks	the	start	and	stop	of	a	loop	or	complex	function.	for	(i	in	
1:5){b<-b+a[i]}	

;	 functions	as	a	carriage	return,	and	indicates	the	end	of	a	function.	You	can	use	
it	to	string	together	several	simple	functions	on	the	same	line.	c<-3;d<-c*2;c;d|	
.	
.	
.	
.	
.	
.	

Read data in from a spreadsheet
There	are	many	ways	to	import	data	into	R.	Here	we	improt	data	from	a	spreadsheet	
format	into	a	data	frame	called	"df1".	
Note	1	Save	your	data	as	comma-delimited	(.csv)	or	tab-delimited	(.txt)	file.	In	Excel,	
choose	SaveAs,	File	Format:	Comma	Separated	Values	(.csv))	or	Tab	Delimited	Text	(.txt)	
Note	2	Except	for	one,	all	these	variations	use	read.csv	for	simplicity.	They	can	also	all	be	
used	with	read.table.	
Note	3	The	pathways	given	here	are	in	mac	OS	X	style	("/Users/Greg/Mydatafolder").	The	
Windows	equivalent	is	("C:").	Note	4	To	peek	at	the	data	after	you	read	it	in,	use	head(df1)	

Read from a .csv file with headers with full path
df1<-
read.csv("/Users/greg/Dropbox/classes/ENVS291Rtransition/IntroToR_Fall2016/so
medata.csv")	

Read from a .txt file with headers with full path
df1<-
read.table("/Users/greg/Dropbox/classes/ENVS291Rtransition/IntroToR_Fall2016/
somedata.txt", sep="\t", header=TRUE)	

Read from a .csv file with headers using read.table, full path
df1<-
read.table("/Users/greg/Dropbox/classes/ENVS291Rtransition/IntroToR_Fall2016/
somedata.csv", sep=",", header=TRUE)	

Read from a .csv file with headers, with set working directory
Wet	the	working	directory	(setwd)	first,	then	you	only	need	the	file	name.	The	working	
directory	stays	set	until	you	change	it.	

setwd("/Users/greg/Dropbox/classes/ENVS291Rtransition/IntroToR_Fall2016/")	
df1<-read.csv("somedata.csv")	

You	can	also	set	the	working	directory	from	R	Studio	using	the	menu	Session	>	Set	Working	
Directory	>	Choose	Directory.	

getwd() #tells you what your current working directory is 	

## [1] "/Users/greg/Dropbox/classes/ENVS291Rtransition/IntroToR_Fall2016"	

Use a dialog box to read from a .csv file with headers
df1<-read.csv(file.choose())	

Read a .csv file from web URL
df1<-read.csv("http://greggilbertlab.sites.ucsc.edu/wp-
content/uploads/sites/276/2015/09/RegressionDataset.csv")	

Working directory:
The	working	directory	is	the	default	folder	you	want	to	use	to	read	from	and	write	to	in	a	
particular	session.	Specifying	the	path	to	the	working	directory	allows	you	to	use	much	
shorter	names	to	refer	to	specific	files.	You	can	set	the	working	directory	using	the	function	
setwd("/path/to/your/folder/here"),	from	the	Session	menu	in	RStudio,	or	from	the	
Files:More	panel	in	RStudio.	

In	Windows	the	pathway	would	be	setwd("C:").	

Libraries (packages):
Libraries	,	or	packages,	are	sets	of	functions	designed	to	do	specific	things,	written	by	
various	people	in	the	R	community.	The	base	installation	of	R	has	a	number	of	useful	
functions,	but	the	real	value	of	R	is	the	development	of	different	libraries.	

Install	packages	from	the	Packages	Panel	in	RStudio.	Choose	Packages,	then	Install,	type	in	
the	first	letters	of	the	name	of	the	package,	and	click	the	one	you	want.	Check	the	install	
dependencies	box,	and	then	click	Install.	You	only	need	to	install	once	(it	writes	the	
package	to	your	computer	for	R	to	access	it.)	

To	use	a	package	you	installed,	you	then	need	to	load	it	into	each	session	in	which	you	use	
it.	In	the	RStudio	Packages	panel	just	click	on	the	check	boxes	for	the	installed	packes	you	
want.	

You	can	do	this	in	your	script	as	well.	I	usually	do	this	at	the	beginning	of	my	analytical	
script.	This	can	be	done	using	either	of	two	functions.	To	load	the	ape	package	for	Analyses	
of	Phylogenetic	and	Evolution:	

library(ape) 	
require(ape)	
#both do the same thing	

Or,	you	can	include	it	directly	in	your	script	code	

You	can	then	use	Package	&	Data:	Package	Manager	to	load	the	libraries	you	want.	Or,	use	
the	command	line	library(xxx),	where	xxx	is	the	name	of	the	library	you	wish	to	load.	

Workspace
Your	Workspace	includes	the	objects	and	libraries	you	have	open	in	a	particular	session.	
When	closing	an	R	session,	if	you	choose	to	Save	workspace	image,	they	will	all	still	be	
there	the	next	time	you	open,	ready	to	go.	You	can	save	your	workspace	in	RStudio	from	
the	Session	menu	>	Save	Workspace	As.	You	can	then	restore	the	Workspace	the	next	time	
you	work	on	that	projectd.	Save	different	workspace	files	for	different	projects.	

