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Statistics are simply formal, mathematical ways to (1) DESCRIBE observations about
groups of things (e.g., to describe the size of a population of animals), and to (2) TEST for
trends, patterns, or differences among groups. (e.g., to see if plants grow larger as soils
become more fertile (a trend) or to see if more rats died after eating a particular chemical
than after eating a placebo (a difference)).
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number of frogs (mean = 1.75 g). This can be
thought of as the weight of the “typical” frog. 0
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than the other - in these cases the median and _ \!\relgf!t c!ass_ (9)

mean can be very different. But the weight of the ~ Figure 1. Size distribution of frogs
“typical” frog is only part of the useful from Walden Pond (N = 60).
information. We also want to know how variable

the population is. One measure of the spread of the distribution is the VARIANCE, which
is a measure of how far away the members of the population are from the mean. The square



root of the variance is called the STANDARD DEVIATION, and is very often presented
along with the mean (and the sample size, n, (number of frogs caught)) to describe the
population (mean = 1.75 +0.7 g, n=60. Translation: Of the 60 frogs measured, the mean
frog weighed 1.75 grams, with a variation (standard deviation) around that mean of 0.7 g).
The standard deviation tells us something concrete about the distribution: 2/3 of all the frogs
will be within one standard deviation of the mean (between 1.05 and 2.45 g), and 95% of all
the frogs will be within two standard deviations (within 0.7%2=1.4 g of 1.75g).

Census vs. survey

In the above example, if we had caught all the frogs in the pond and weighed them - it would
have been a CENSUS of the pond. However, usually a total census is not possible or
desirable. This may be because the study would be too costly, because it would destroy the
pond to catch all the frogs, or simply because we don’t need to know exactly what the mean
frog size is: we just need a good, solid estimate of the mean and the variance. Usually we
SURVEY a population by taking a RANDOM SAMPLE - we measure only part of the
population to ESTIMATE what the whole looks like. The larger the sample size the closer
the approximation of the true mean of the population. It is important the sample be random
- otherwise we might BIAS the sample toward big frogs (easier to catch) or small frogs
(easier to hang onto), or towards calling male frogs.

There are several sources of ERROR in the frog study. First, is measurement error - we
never know exactly how much a frog weighs, and how precise we are depends on our
measuring instrument - a bathroom scale is not very precise and leaves a huge measurement
error, whereas a $10,000 analytical balance tells us within 0.1 mg how much the frog
weighs. The instrument should be chosen to provide us with the minimum necessary
precision, without overkill. Measurement error exists in both the census and the survey. In
the survey there is an additional source of error, the sampling error - this is how far our
estimate of the mean frog size is from the true mean of the population (the difference
between the mean of all 394 frogs and the 60 randomly sampled frogs). We must design
studies to reduce the sampling error to a level adequate to address hypotheses with an
acceptable level of certainty. There is a balance between lower sampling error (through
larger sample sizes) and the costs of sampling more individuals. Sampling and
measurement error should not be confused with natural variability in the population - frogs
come in a range of sizes.

Description versus hypothesis testing

Sometimes we just want to describe something, but usually we want to compare two or more

groups, or look for a trend in the data. One way is to just eyeball the data - it looks like the

frogs in Crystal Pond are bigger than the frogs in Walden Pond (Figure 2) - but eyeballing
is fraught with problems of
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Fig. 2. Number of frogs by weight class in Walden =~ mean weights are equal). Notice
and Crystal Ponds (N=60 in each).



that the null hypothesis is stated in the negative.

The complement of H_ is the ALTERNATE HYPOTHESIS, H..
H,: The frogs in Walden Pond are different in size from the frogs in Crystal Pond (their
mean weights are different).

To test the null hypothesis, we collect random samples of frogs from each pond, weigh
them, and get estimates of the mean and variance for each pond. =~ We might be tempted to
say that, well, the frogs in Walden Pond had a mean of 1.75 g, and those in Crystal Pond of
1.83 g, so the sizes are different between the two ponds, and we reject the null hypothesis.
HOWEVER, we must think about the sources of error in those estimates of the mean -
natural variability in frog size, measurement error, and sampling error - all wrapped up into
the standard deviation. The question is really “is the difference between the estimates of the
means of the two populations significantly larger than the difference we might expect given
the measurable error around our estimates of the means”? In this case we can use a ratio of
the difference between the means to the standard deviations of the samples as a test - if the
ratio is greater than a particular value (which can be looked up on a table) we reject the null
hypothesis of no difference. If the ratio is smaller than that value we can not reject H , and
we say that there is no difference between the means. This is called a #-test, one of many
tests in statistics.

By convention we are usually willing to accept a 5% chance (1 in 20 times) that we are
wrong in rejecting the null hypothesis. If we reject the null hypothesis (and say that there is
a difference between the means) when really there is no difference, this is a TYPE I
ERROR - a false positive. Depending on the question, it is sometimes wise to accept only
a 1% or 0.1% chance of incorrectly rejecting the null hypothesis. Alternatively, perhaps the
risk of saying there is no effect when an effect exists is so great that we are willing to accept
a false positive 10% of the time. We set the acceptable level of risk of making a Type I error
in advance by choosing an “alpha” level - 5% risk is a =0.05, or 1% risk is o = 0.01. If
the test value (such as the ratio in #-test above) is above the critical value for that alpha, we
reject the null hypothesis and say that “P < 0.05”, which means that based on the test, there
is less than or equal to a 5% chance that we are wrong in rejecting the null hypothesis. In
scientific hypothesis testing we say that a result that allows us to reject the null hypothesis is
statistically SIGNIFICANT at P < 0.05. Scientists often use the terms "highly significant"
for P<0.01 and marginally significant for 0.05<P<0.10, as well. Be cautious of different
uses of “significant” - a statistically significant result may not be particularly “significant”
in understanding the large picture. Similarly people often say that a discovery is
“significant” because of its impact on science or society, without reference to its statistical
significance.

On the other hand, if we do not reject the null hypothesis (and say that there is no difference
between the means) when there really is a difference (H, is false), we call this a TYPE II
ERROR - a false negative.. The POWER of a test is our ability to detect a true difference
between the two groups, and is represented as Beta , § = probability of a Type II error. If
we know a little about the mean and variance of the populations ahead of time we can design
a study to give us the Power to detect differences of a desired magnitude, if they exist.

Do not interpret P < 0.05 as a 5% probability that something will happen - it is a measure of
the probability of being wrong in our evaluation of an hypothesis. The probability of an
event is something that can be measured in much the same way as frog weights. If we want
to know if brand A light bulb is more break resistant that brand B, we could take 100 of
each and drop each one to the floor from a height of 1 meter, counting the proportion of
bulbs that breaks for each brand. Through this process we might determine that 20/100 =



20% of brand A and 30/100 = 30% of brand B broke. Using probability theory we can
then calculate the variance associated with those estimates (a function of sample size and the
measured proportion broken) and conduct a test (often a chi-square (y*) test) to see if we
can reject the null hypothesis that there is no difference in the probability of breakage
between the two brands, with 5% chance of being wrong in our assessment. The probability
of bulbs breaking, and the probability of us mistakenly evaluating our null hypothesis are
two different issues.

Kinds of variables

Sometimes we look at how two variables change with respect to one another, or at how they

are CORRELATED. Correlation between two variables does NOT mean that one causes

the other (e.g., number of crimes in a state is correlated with the number of public schools,

but (hopefully) education does not cause crime). When designing studies to look at causal
relationships we ask how the
potentially causative
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you figure out if the increase in
Temperature (°C) temperature caused the increase
in chemical production, or if it
were only correlated with it
Fig. 3. Chemical production as a function of (Figure 3)?
reaction temperature.

Kinds of data

Data come in two main types, qualitative and quantitative. QUALITATIVE data represent
states of being. Qualitative data are NOMINAL when they indicate what category a sample
belongs in (e.g., is it blue, red, or green?). Sometimes qualitative data have a natural order to
them, in which case they are called ORDINAL (e.g., small, medium, large).
QUANTITATIVE data are from measurements on a particular scale (e.g., weight of a frog,
or number of seeds in a fruit, temperature, or percentage of a population that is sick).
Nonparametric statistical tests are appropriate for nominal and ordinal data; parametric tests
make assumptions about the distribution of the data, and are appropriate for asking
questinos about quantitative data.

Oh, and a note. Datum is the singular of data; therefore “data” is always plural (i.e., “The
data were consistent with the prediction that ....” (NOT “the data was consistent!)).



A cheat sheet for interpreting some common statistics in

Environmental Studies

Note: this is NOT a substitute for having a good grasp on statistics, but an aid for when you
are a little rusty.

ANOVA

X or

Chi square

Correlation

df or degrees
of freedom

F

Interaction
term

N

P or p-value

R*orr

Regression

Analysis of Variance. Parametric test for comparison of the means of three
or more groups (see F).

Non-parametric test statistic often used for tests of frequency data, such as
tests of association between two or more events (contingency tables) or
whether two distributions are different. The bigger the better, but P depends
on the degrees of freedom.

Measure of association of trends in two variables, how much a change in one
variable can be used to predict a change in another; does not necessarily
imply a causal relationship (See R*).

Indicates the number of comparisons being tested and the number of
replicates in each group.

Test statistic for comparison of three or more means, such as in an ANOVA;
the bigger the better, but P depends on the degrees of freedom.

In a multiple ANOVA, used to test whether the effects of one factor (say,
sex) influences the effect of another factor (say, diet). Denoted as
Sex X Diet in the ANOVA table.

The sample size.

The probability of rejecting the null hypothesis when in really is true; it
indicates statistical significance of the test; O tol, the smaller the better; by
convention P<0.05 is considered significant.

Correlation coefficient; R*> = r*; Indicates how well a model fits the data
(such as a regression model); R” is the better measure of fit, r also indicates
whether it is a positive or negative association; R* ranges 0 to 1, the closer to
1 the better the fit. An R°=0.65 means the model explains 65% of the
variation in the data.

Fits a model to explain trends in the relationship between two or more
variables; y = mx + b is a linear regression. Implies a causal relationship
where a change in x leads to a change in y, with slope m and intercept b..

Student's ¢#; a test statistic for comparing two means, or one mean from a
particular value; the bigger the better, but P depends on the degrees of
freedom.



Dichotomous key for choosing statistical tests

This key is a guide to help you select an appropriate statistical test. Consult a statistics text
for more details.

la. Question about associations among variables . . . 2
1b. Question about differences among groups . . . 5

2a. The variables vary together but one does not depend on the other . . . .3
2b. The variables vary together, and the value of one is supposed to depend on the value of
the other (includes a prediction or expectation of cause-effect) . . . 4

3a. Parametric . ....Pearson Correlation
3b. Nonparametric . . . Spearman Rank Correlation or Kendal's Correlation

4a. Parametric . . . . Linear Regression
4b. Nonparametric . . . Not available

5a. Question about differences between frequency distributions . . . 6
5b. Question about differences between means or variances . . . .7

6a. Comparison between an observed frequency distribution and a theoretical distribution . .
. Chi-squared (’) or G test, "Goodness of Fit"

6b. Comparison between two or more frequency distributions . . . Chi-squared ()°) or G
test of independence

7a. Question about differences between sample variances . . . 8
7b. Question about differences between sample means . . . 9

8a. Question about differences between two variances . . . . . F test
8b. Question about differences among three or more variances. . . Bartlett Test

9a. Question about difference between two means . . . . . 10
9b. Question about difference among three or more means . . . 13

10a. Parametric . . . . 11
10b.Nonparametric . . . 12

11a. The two samples are grouped in natural pairs . . . Paired t test
11b. The two samples are independent . . . . Non-paired t-test

12a. The two samples are grouped in natural pairs . . . Wilcoxon signed-rank test
12b. The two samples are independent . . . Mann-Whitney U or Wicoxon tests

13a. Parametric . . . . Analysis of Variance (ANOVA)
13b. Nonparamtric . . . Kruskal-Wallis Test



